Chapter 4: Axial Load

Chapter Objectives

- ✓ Determine the elastic deformation of axially loaded members
- Apply the principle of superposition for total effect of different loading cases
- \checkmark Deal with compatibility conditions
- \checkmark Deal with thermal stresses
- Misfit problems

Static **Determinate** Problems

Static Indeterminate Problems

Problems involving temperature changes

Verrazano-Narrows Bridge: Because of thermal expansion of the steel cables, the bridge roadway is 12 feet (3.66 m) lower in summer than in winter

The device is used to measure a change in temperature. Rod AC and BD are made of Tungsten and Magnesium respectively. At a given temperature T_o , the rigid bar CDE is in the horizontal position. Determine an expression for the temperature T as a function of the vertical displacement of point E, δ_E .

- Rod AC: Tungsten α_t
- Rod BD: Magnesium α_m

 $\alpha_m > \alpha_t$

Statically indeterminate problems

 $E_1 = E_2 = E$ $\alpha_1 = \alpha_2 = \alpha$ A_1, A_2