Monte Carlo

Randomness

What types of problems can we solve with the help of random numbers?

We can compute (potentially) complicated averages:

1. Where does "the average" web surfer end up? (PageRank)
2. How much is my stock portfolio/option going to be worth?
3. What are my odds to win a certain competition?

Random number generators

- Computers are deterministic - operations are reproducible
- How do we get random numbers out of a determinist machine?

Demo "Playing around with random number generators"

- Pseudo-random numbers
- Numbers and sequences appear random, but they are in fact reproducible
- Good for algorithm development and debugging
- How truly random are the pseudo-random numbers?

Example: Linear congruential generator

$$
\begin{array}{ll}
x_{o}=\text { seed } & \text { a: multiplier } \\
& c: \text { increment } \\
x_{n+1}=\left(a x_{n}+c\right)(\bmod M) & M: \text { modulus }
\end{array}
$$

- If we keep generating numbers using this algorithm, will we eventually get the same number again? Can we define a period?

Good random number generator

- Random pattern
- Long period
- Efficiency
- Repeatability
- Portability

Random variables

We can think of a random variable X as a function that maps the outcome of unpredictable (random) processes to numerical quantities.

Examples:

random variable

- How much rain are we getting tomorrow?

$$
x=80 \%
$$

- Will my buttered bread land face-down?

We don't have an exact number to represent these random processes, but we can get something that represents the average case.

To do that, we need to know how likely each individual value of X is.

Discrete random variables

Each random value X takes values x_{i} with probability p_{i}

$$
\text { for } i=1, \ldots, m \text { and } \sum_{i=1}^{m} p_{i}=1
$$

Example:

Random variable $\Longrightarrow X=$ \#top of die after each roll

Possible values x_{i}

$$
\begin{aligned}
& x_{1}=1 \longrightarrow p_{1}=1 / 6 \\
& x_{2}=2 \longrightarrow p_{2}=1 / 6 \\
& \vdots \\
& x_{6}=6 \longrightarrow p_{6}=1 / 6
\end{aligned}
$$

Coin toss example
Random variable X : result of a toss can be heads or tails

$$
\begin{aligned}
& x_{1}=X=1: \text { toss is heads } \longrightarrow p_{1}=0.5 \\
& x_{2}=X=0: \text { toss is tail } \longrightarrow p_{2}=0.5
\end{aligned}
$$

Expected value: $E(x)=\sum_{i=1}^{m} p_{i} x_{i}$

Roll: $E(x)=\frac{1}{6}(1)+\frac{1}{6}(2)+\frac{1}{6}(3)+\cdots+\frac{1}{6}(6)=\frac{7}{2}$

$$
\text { Toss: } E(x)=\frac{1}{2}(1)+\frac{1}{2}(0)=0.5
$$

Texas Holdem Game
Question: for each starting pair of cards, what is the probability of winning? 1 Numerical experimental \Longrightarrow play N games

Texas Holdem Game

Question: for each starting pair of cards, what is the probability of winning?

Starting hand (deterministic variable \mathbf{S}):

Dealer hand (random variable \mathbf{D}):

$$
\begin{aligned}
& \text { for } i=1, N \text { (games) } \\
& \text { generate } D_{1} O \\
& \text { who win }(S, D, O) \rightarrow \text { use poker rules to }
\end{aligned}
$$

Texas Holdem Game

$$
\begin{aligned}
& X=\operatorname{Win}(\boldsymbol{S}, \boldsymbol{O}, \boldsymbol{D}) \quad \text { winning }=\frac{\# \text { time }}{\boldsymbol{\#}} \begin{array}{l}
X=[1,0,0] \text { : starting hand wins } \\
X=[0,1,0] \text { : starting hand loses (opponent wins) } \\
X=[0,0,1] \text { : tie }
\end{array} \\
&
\end{aligned}
$$

odd of start hand

Numerical experiment of $N=50$ games gamine $1 \rightarrow X=$ Who Win $(5,0 D)=[0,1,0]$

$$
\begin{aligned}
& 2 \rightarrow \\
& x=[1,0,0] \\
& N \rightarrow \\
& \frac{x=[0,1,0]}{(+) \quad\left[\begin{array}{l}
\text { time } \\
\text { tWin }
\end{array}, \begin{array}{l}
\text { \#time, } \\
\text { twin }
\end{array}\right)}
\end{aligned}
$$

Texas Holdem Game
 increase $N \rightarrow$ reduce variance

Starting hand: pair of aces
Plotting the number of wins for 100 numerical experiments

$N=50$ games

$N=10,000$ games

Monte Carlo methods

- You just implemented an example of a Monte Carlo method!
- Algorithm that compute APPROXIMATIONS of desired quantities based on randomized sampling
\rightarrow Often used to approximate areas/wohemes of complicated surfaces.

Example: Approximate the number π

1 numerical experiment.

-sample N points inside domain

- count \# points that are inside circle $\rightarrow N_{0}$
$-A_{\square} \propto N_{\square}=N$
- Ho αN_{0}

$$
\pi r^{2}=4 N_{0} / N
$$

$$
\frac{A_{D}}{A_{0}}=\frac{N}{N_{0}} \Rightarrow A_{0}=\frac{N_{0}}{N} A_{D} \Rightarrow
$$

$$
A_{0}=\frac{4 N_{0}}{N}
$$

$(\pi)_{\text {approx }}=\frac{A N_{0}}{N}$

What can we learn about this simple numerical experiment?

- What is the cost of this numerical experiment? What happens to the cost when we increase the number of sampling points (n)?
- Does the method converge? What is the error?

$$
\begin{aligned}
& \text { error }=O\left(\frac{1}{\sqrt{n}}\right)=O\left(n^{-1 / 2}\right) \\
& \\
&
\end{aligned}
$$

